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Abstract. We obtain the Dyson–Mehta13-statistic for pseudo-integrable billiards and show
that it is non-universal with a universal trend, also that this trend is similar to the one for
integrable billiards. We present a formula, based on exact semiclassical calculations and the
proliferation law of periodic orbits, which gives rigidity for the entire range ofL. To consolidate
our theory, we discuss several examples finding complete agreement with the numerical results,
and also the underlying fundamental reasons for the non-universality.

One of the central issues of quantum chaos is the universality of spectral fluctuations in
integrable and chaotic limits of quantum dynamical systems. It has become clear through
the semiclassical analysis of these Hamiltonian dynamical systems, that the source of
universality is the nature of the periodic orbits, and also that the same source is responsible
for the non-universality in spectral fluctuations. We believe that an exact semiclassical
analysis of the systems that admit non-universal spectral fluctuations can help give a deeper
understanding of universality and its breakdown. In this paper, we treat this dichotomy
by considering dynamical systems at the ‘edge of chaos’, the pseudo-integrable billiards
[1–3], wherein a particle moves freely inside a given enclosure, reflecting specularly from
the walls. For these systems the generating function (first integral) which is independent of
the HamiltonianH and in involution withH , does not exist on a countable set of singular
points. Due to the mathematical intractability of these systems, few exact results are known
[4, 5]. Numerical studies performed on the energy spectra of these systems [6–12] led to
the belief that the spectral statistics is intermediate between those for the Poisson ensemble
and the Gaussian orthogonal ensemble (GOE) of random matrices. However, the results on
various measures of the spectral statistics as analysed from the periodic orbit theory have
been indicative only and do not bring out a complete or explicit picture of the underlying
correlations. The aim of this paper is to provide quantitative as well as qualitative statements
about the spectral rigidity of integrable and pseudo-integrable billiards (IB and PIB), inspired
by examples which can be solved exactly, and compare the results with those of [7, 8, 13].
We employ the semiclassical formalism [14] in conjunction with the law of proliferation of
periodic orbits derived in [5] and establish non-universality of the Dyson–Mehta statistic
for these systems.

In their statistical theory of energy levels of complex systems, Dyson and Mehta [15]
proposed the1-statistic to study spectral fluctuations on the intermediate energy scale, the
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most popular being the13-statistic defined as a local average of the mean-square deviation
of the spectral staircase from the best-fit straight line over an energy range corresponding
to L mean level spacings. This can be expressed in terms of the contributions of periodic
orbits originating in semiclassical expansion of the oscillatory correctiondosc(E) to the
mean density of states [14]. For the two-dimensional PIB, thedosc(E) can be written as
[2]†

dosc(E) = 1

4πh̄2

∑
r,j

AjJ0

(√
E j̀,r

h̄

)
(1)

where j represents the label for primitive periodic orbits (PPO) andr is the label for
repetitions, mass is taken as1

2. Aj denotes the projective phase space areas of the bands
in which periodic orbits occur. It can be shown using semiclassical formalism of [14] that
the rigidity is given by

13(L, E) = E1/2

4π3h̄

∑
j

∑
k

AjAk

`
3/2
j `

3/2
k

cos

{√
E( j̀ − `k)

h̄

}
G(yj , yk) (2)

whereG(yj , yk) = f (yj − yk) − f (yj )f (yk) − 3f ′(yj )f
′(yk), and f (y) = siny/y, y =

L`/(4〈d〉E1/2h̄) (` is the length of the PO,〈d〉 is the average density of states,AR/4πh̄2,
AR being the area of the enclosure).

The main questions that ensue from the numerical studies [6–8, 13] are: (i) are the levels
of PIB uncorrelated and do they mimic a Poisson process over a certain range ofL, as seen
in IB?; (ii) is there any saturation of rigidity in PIB ifL exceeds the system-dependent
range, as seen for the IB?; (iii) what is the essential difference between PIB, IB and chaotic
billiards in terms of level correlations?; (iv) can we obtain a formula for the rigidity such that
Poisson and non-Poisson results follow in a natural way for the IB and PIB, respectively?
This paper answers all these questions to a large (sometimes complete) extent. This success
holds due to the fact that the rigidity is a direct consequence of the proliferation law with
some simple, non-trivial modifications in the known formalism shown below.

Recalling equation (2), we employ the uniformity principle [16] and retain also, apart
from the diagonal, the off-diagonal part corresponding to the systematic degeneracies in the
lengths of POs (giving the same contribution to the rigidity as the diagonal terms). From
the exact results on some of the PIBs [4], one can classify the bands of the POs in such a
way that the projective phase space area occupied by all periodic orbits in a given class (say
α) is identical (Aα). It seems that such classification of the bands in terms of the projective
phase space areas is also possible for the generic PIBs about which we will comment later.
With this in mind, we can write13(L, E) as

13(L, E) = E1/2

4π3h̄

[ ∑
α

g2
αA2

α

∑
j

G(yα,j )

`3
α,j

+
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(1 − δα,β)gαgβAαAβ

∑
j

∑
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δ`α,j ,`β,k

G(yα,j , yβ,k)

`
3/2
αj `

3/2
βk

]
(3)

where G(y) = 1 − f 2(y) − 3(f ′(y))2 and Greek subscripts denote classes of periodic
bands. In equation (3),gα(gβ) denotes the number of POs with the same action belonging
to the classα(β), andδi,j is the usual Kronecker symbol. In equation (3) the summation∑

j G(yα,j )/`
3
α,j can be written as

∫ ∞
ymin

dFα G(yα)/`3
α in the continuum limit due to the

mathematical nature of the summand, where dFα represents the number of periodic orbits

† For most of the PIB known today, periodic orbits are of neutral or marginal stability and hence occur in bands.
Equation (1) is only valid for such cases.
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within length` and` + d`. This dFα can be deduced from the proliferation law (average
or asymptotic part) [5], which gives the average number of periodic orbits of length6 ` as
(for different classesα)

Fα(`) = aα`2 + bα` + cα. (4)

We emphasize that this law not only arises from enumeration of periodic orbits [5] but also
can be deduced from the eigenvalue spectrum by inverting the trace formula analytically
[17]. It was shown in [17] that (4) is the classical analogue of the celebrated Weyl formula.
It may be noted that the exact proliferation law will also contain an oscillatory term dFαosc.
We neglect the effect of this term since its contribution to the above integral will be extremely
small due to the oscillatory nature of dFαosc around zero. With equation (4), we have now
(after unfolding the spectrum via rescaled energiesE = E〈d〉
13(L, E) = L

2π2AR

[ ∑
α

g2
αA2

αaαI1,α +
∑

γ

∑
η

δ`γ ,`η
gγ gηAγ AηaηI1,η

]

+ L2

8π3/2A
3/2
R E1/2

[ ∑
α

g2
αA2

αbαI2,α +
∑

γ

∑
η

δ`γ ,`η
gγ gηAγ AηbηI2,η

]
(5)

where
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ymin,α

dyα y−2
α G(yα) I2,α =
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ymin,α

dyα y−3
α G(yα) (6)

both these can be evaluated easily withymin = πL/Lmax, whereLmax,α =
√

4πARE/`2
min,α.

For small ymin, I1 = 2π/15, I2 = 1
9; and for largeymin, I1,α = Lmax,α/πL, I2,α =

L2
max,α/2π2L2. For L < minα Lmax,α/π ,
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15πAR

[ ∑
α

g2
αA2

αaα +
∑

γ

∑
η

δ`γ ,`η
gγ gηAγ Aηaη

]

+ L2

72π3/2A
3/2
R E1/2

[ ∑
α

g2
αA2

αbα +
∑

γ

∑
η

δ`γ ,`η
gγ gηAγ Aηbη

]
. (7)

For L � maxα Lmax,α/π ,

13(L, E) = 1

2π3AR
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(8)

It is important to note that minimum and maximum (overα) Lmax correspond, respectively,
to the longest and shortest (overα) orbits of the set containing the shortest periodic orbits
of differentαs. It is the consequence of this observation that will lead us to understand the
fundamental distinction between the spectral correlations of integrable and pseudo-integrable
billiards.

Ignoring I2 for the sake of brevity, the formula valid for the entire range ofL is given
by (denotingLmax,α/πL by 3α),

13(L, E) = L

2π2AR

∑
α

g2
αA2

αaα[3α − 2
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5
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3
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4
α sin(2/3α)

+ 3
103

5
α cos(2/3α) − 4

15 si(2/3α)] (9)
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where si(x) = − ∫ ∞
x

dt t−1 sint . Equation (9) along with the limiting results (7), (8); which
clearly establishes a relation between13 and information about the classical periodic orbits
such as proliferation law, band areas, degeneracies in lengths etc. This is the main result
of our paper as it applies to all integrable and pseudo-integrable billiards. To understand
the formulae better, we now propose to examine some paradigm systems carefully, and
subsequently compare the results with the known numerical results.

In this regard, we consider the specific examples of an incommensurate rectangle billiard
(IRB), the graveyard billiard (GB) and theπ/3-rhombus billiard (RHB).

First, let us consider the IRB with sides(L, γL), γ being an irrational number. All
periodic orbits fall in a single class occupying projective phase space area 4AR (AR = γL2),
except the two shortest periodic orbit bands parallel to either pair of sides of IRB. The area
of these two shortest periodic bands is 2AR. The proliferation law for the IRB can be
easily found by employing the ideas of stacking and replication [4]; we get (counting all
the repetitions of the PPOs),

FIRB(`) = a`2 + b` = π

16γL2
`2 + γ + 1

4γL `. (10)

Using a,A (= 4AR) in (9) we get complete quantitative agreement with results obtained
earlier [13] forL < Lmax/π . As observed in [13], the oscillations in13(L) are rather weak
beyond the ‘crossover regime’.

To get the correct saturation values of13(L), we have to consider the O(`) term in
(10). Taking account of this, in the region whereL < Lmax/π , we get

13(L, E) = L

15
+ 1

9
√

2π3/2

(
γ + 1

γ

L2

E1/2

)
. (11)

The second term is quite small compared to the first one due to the factorE−1/2. For
L � Lmax/π , on the other hand, we have

13(L, E) = E1/2

2π3/2

(
1 +

√
γ (γ + 1)

2π

)
(12)

which is in very good agreement with the numerical results.
Our next example is the graveyard billiard, which is a simple variation of the barrier

billiard described in [19]. We consider a linear barrier of length equal to half the side length
L of the rectangle (L, 2L) placed at its centre. This is an example of a PIB whose invariant
surface is topologically equivalent to a sphere with two handles (genus,g = 3). The law
of proliferation is the same asaα`2 + bα`. We have to obtainaα, bα for different classes of
bands in this system. These calculations can be done by invoking ideas similar in spirit to
those applied to the IRB. However, the presence of a barrier generates an infinite lattice of
barriers and gaps with barrier-to-gap ratio as well as the distance between the two barriers
placed on top of each other as unity. Thus, the end points of the barriers form lattice points
which can be labelled by integer pairs entailing, thereby, a natural classification in terms
of the coprime pairs(q, p). Each trajectory from origin to the coprime pairs(q, p) gives
primitive periodic orbit closing at(mq, mp), wherem is integer. The length of PPO is then
given bymL√

(q2 + p2). This classification leads to results that are summarized in table 1
With these, forL < minα(Lmax,α/π) = √E/4π ,

13(L, E) = L

15
+ 1

18
√

2π3

L2

E1/2
(13)

and forL � maxα(Lmax,α/π) = √
8E/π ,

13(L, E) ∼
[
(
√

2 + 13)

12π3/2
+ 9

8
√

2π5

]
E1/2. (14)



Rigidity of quantum pseudo-integrable billiards 3907

Table 1. Summary of results for GB.

Closing Band Coeff. Coeff. Degeneracy
Class point area a b g `min

odd–odd (4q, 4p) 2AR π/192L2 0 2 4
√

2L
even–odd1 (2q, 2p) AR π/48L2 1/12L 2 L
even–odd2 (2q, 2p) AR π/48L2 1/12L 2 L
odd–even (4q, 4p) 2AR π/192L2 1/24L 2 4L

We will discuss these results after we present calculations for yet another well-studied
system—theπ/3-rhombus billiard. This is an almost-integrable system with an invariant
integral surface of genus two. For this system tesselletion of the plane is not complete
and results in more general barrier structure [3]. We reproduce here, our results [4] about
classification and distribution of periodic orbits. Again, here each trajectory from origin to
a coprime pairs(q, p) represents PPO ending atc(q, p). The length of the periodic orbit
is given bycL√

(q2 + 3p2) andAR is
√

3L∈/2. Other important results are summarized in
table 2.

Table 2. Summary of results forπ/3-rhombus billiards.

Closing Band Coeff. Degeneracy
Type Class point area a g `min

Centre–centre odd–odd (q/2, p/2) AR π/27AR 2
√

3L
(q, p) 2AR π/108AR 2 2

√
3L

odd–even (q, p) AR π/108AR 2
√

21L
(2q, 2p) 2AR π/432AR 2 2

√
21L

even–odd (q, p) AR π/108AR 2
√

39L
(2q, 2p) 2AR π/432AR 2 2

√
39L

Centre–edge odd–odd (3q/2, 3p/2) 3AR 2π/243AR 2 3
√

37L
odd–even (3q, 3p) 3AR π/243AR 2 3

√
7L

even–odd (3q, 3p) 3AR π/243AR 2 3
√

7L

Using these results, we get forL < minα(Lmax,α/π) = √
2E/37

√
3π ,

13(L, E) = 28

27

L

15
+ 1

37/421/2π3/2

L2

E1/2
(15)

and forL � maxα(Lmax,α/π) = √
2
√

3πE/3,

13(L, E) =
√√

3
6 [3276+ 728

√
3 + 117

√
7 + 63

√
13+ 312

√
21]

14 742

E1/2

π3/2
+

√
E/2

35/2π5
. (16)

From the expressions and examples discussed above, one can clearly see that there is
a universal trend of13(L) with L for integrable and pseudo-integrable billiards. More
precisely, forL < minα(Lmax,α/π), the rigidity is very well approximated byL/15, and for
L � maxα(Lmax,α/π) it saturates with a crossover connecting these two limits smoothly.
The extent of the crossover region is given by the difference between minα and maxα of
Lmax,α, or in other words, depends on the spectrum of lengths of shortest periodic orbits
over α. Non-universal aspects, thus, arise due to non-trivial classification depending upon
the degree of tessellation of the invariant surface in terms of a system-specific fundamental
region [4]. For instance, in IRB, tessellation is complete and there is only one class of bands
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(α = 1); the crossover region is expected to be of lesser extent—a fact fully corroborated
by the numerical experiments. In the GB, there is a barrier (gap-to-barrier ratio is unity)
in a rectangle which gives rise to a periodic untessellated arabesque in terms of which the
classification is facilitated, the number of bands here is seven. Similarly for the RHB,
the number of bands is eighteen. Importantly, it should be noted that the value ofL at
which the spectral rigidity deviates from the Poisson value ofL/15, and the value at which
saturation sets in, depends upon the lengths of the shortest periodic orbits distributed over
various classes admissible in a given system. Indeed, this is the fundamental source of
non-universality.

Let us discuss the numerical results of various pseudo-integrable billiards. Most of the
studies have been on rhombus billiards [7], square torus billiards and its generalizations [6]
and singular billiards [9]. Analysis of singular billiards was carried out and one understands
the level spacing statistics [20]. However, there are recent studies [12] which are still
unexplained. Study of the two-level cluster function (in particular62(L)) does not give
the GOE result [21] although the level spacing is GOE raising, a question currently beyond
explanation. Therefore, we concentrate on an explanation of the results for non-singular
systems.

Figure 1. 13 statistic for π/3-rhombus billiards. The full curve represents our results for
E = 350, the triangles represent the result of [7] and the broken line represents the Poissonian.

Perhaps the paradigm PIB is also RHB [7, 8]. In both these studies, one can observe that
the rigidity is intermediate to Poisson and GOE. From our analysis, taking the energy and
parameters from these numerical works, it turns out that deviation fromL/15 would occur
at L ∼ 1 and 2, respectively. We illustrate this in figure 1, where we compare our analytical
result with that of the numerical work [7]; the agreement is clearly evident. Oscillations in
the numerical result about our curve may be due to a different averaging procedure. The
crossover values are also correctly predicted by our analysis. We show the behaviour of
13 for small valus ofL in figure 2, where deviation fromL/15 is evident. In figure 3
we showδ3 for complete range ofL, where the crossover region and the saturation can
be seen. Since numerical results are not available for higher energy and for a larger range
of L, the saturation cannot be seen clearly in the numerical experiments. It is, therefore,
desirable to carry out extensive numerical work for higher energy and for a larger range
of L. The formulae (7), (8) provide guidelines for choosing the appropriate number of
levels to bring out all the salient features of the systems discussed above. Our analysis also
explains the results of [6] where one getsL/15 for very small values ofL and there is
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Figure 2. 13 statistic forπ/3-rhombus billiards. The full curves represent rigidity for 350 and
1000 levels: in our analysisE = 350 and 1000, respectively.L = minα(Lmax,α), where rigidity
deviates fromL/15 are shown by\ on the respective curves.

Figure 3. 13 statistic forπ/3-rhombus billiards. The full curves represent rigidity for 350 and
1000 levels: in our analysisE = 350 and 1000, respectively.L = maxα(Lmax,α) above which
the start of saturation is shown by\ on the respective curves.

a saturation regime. Unfortunately, because of constraints over levels available, the belief
of an intermediate behaviour between that of Poisson and GOE has been pursued for quite
some time. Our analysis clearly reveals that such a behaviour does not exist and that spectral
rigidity never becomes GOE (it is a fundamentally different objective to fit a curve to the
GOE result when one is seeking for a theory).

The occurrence of periodic orbits in the bands is a likely reason for the slow rise of
13(L) in the largeL region and overall stronger fluctuations than the GOE result. A recent
result on stadium billiards also indicates this possibility [22]. In [22],13(L) is shown to
be rising well above the GOE curve if the contribution of the bouncing ball modes is taken
into account. In chaotic systems like this (also, e.g. the Sinai billiard) the analysis of bands
can be carried out using the above theory and it is expected that there exists a departure
from GOE as well as a rise in spectral fluctuations after someL decided by the length of
the periodic orbits in the band. Recently, non-genericity of the rigidity arising from banded
orbits has been discussed for the stadium billiards [23].

Finally, we comment here that the theory and results discussed above are not specific to
the examples we have considered, for example the same theory will hold good for generic
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pseudo-integrable systems, e.g. one can vary either barrier length or the position of the
barrier in GB which will result in different classification, but will follow the same treatment
as above. Work in this direction is in progress.

In conclusion, we have developed a theory for the13-statistics for systems in which
periodic orbits of the marginal stability (in bands) occur, which gives us a formula for the
rigidity from which Poisson and non-Poission results follow in a natural way. Answers
to the basic questions we have asked above are as follows. (i) The levels of PIB are
uncorrelated and mimic a Poission process forL < minα(Lmax,α) which depends on the
shortest periodic orbit of a given system, hence a non-universal value. This condition also
stipulates the minimum number of energy levels that one should consider in the numerical
experiment to observe this effect. (ii) ForL � maxα(Lmax,α), which depends mainly on
the longest of the shortest PO among the different classes, the spectral rigidity saturates to
a non-universal value. (iii) The fluctuation properties of PIB and IB differ essentially in
the extent of transition region. In IB the transition region will be of less extent, since there
is only one class of PO; deviation from Poission and saturation is determined by the same
PO (i.e. the shortest one). In PIB because large number of classes of PO are present, all
shortest PO among the different classes play important roles in determining the shape and
extent of the crossover region. In a similar manner, subsequently, the general two-level
cluster function and the form factor have recently been found [24].

We acknowledge our immense debt of gratitude to Akhilesh Pandey, without his critical
remarks the work would not have taken the present form.
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